Prioritizing Food Waste Management for a Greener Tomorrow Beyond Landfills: Strategies to Shrink our Carbon Footprint through Food Waste Reduction

Kasamba Ilunga Eric *

Department of Biomedical Sciences, Faculty of Medicine, University of Lubumbashi, Democratic Republic of the Congo.

*Author to whom correspondence should be addressed.


The Sustainable Development Goals (SDGs) are attracting global attention amid concerns over food security and environmental pollution resulting from the expanding global economy and population growth. Food waste that occurs at all stages of processing is thrown into landfills. This food waste is sent to landfills where it decomposes to produce greenhouse gas emissions. A significant portion of waste thrown into landfills is organic kitchen waste that decomposes to produce greenhouse gases responsible for climate change and environmental risks.

This observation is that of our results, which point out that poor management of food waste, the landfills which receive it are uncontrolled and thus leaving access to human persons due to the proximity to the residential houses, as well as to insects and animals. Incineration is the main method used to dispose of waste, with very few initiatives for recycling or composting of waste, thus leaving their degradation or incineration in the open air with all the consequences on the carbon footprint and the climate.

Initiatives for the good use of waste, in particular: recycling, composting, etc., must be encouraged for the good management of waste and landfill sites in order to preserve our environment from greenhouse gases. For this reason, regulations on waste management and landfills must be considered to prevent the future.

Keywords: Food waste, waste discharge, carbon footprint, recycling

How to Cite

Eric, Kasamba Ilunga. 2024. “Prioritizing Food Waste Management for a Greener Tomorrow Beyond Landfills: Strategies to Shrink Our Carbon Footprint through Food Waste Reduction”. Asian Journal of Environment & Ecology 23 (7):37-48.


Download data is not yet available.


Singh V, Wyatt J, Zoungrana A, Yuan Q. Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source. Recycling. 2022;7:10. doi:10.3390/recycling7010010. [CrossRef] [Google Scholar] [Ref list].

Tyagi R, Agrawal A, Ali SS. Indian Renewable Energy Act 2015: A Step Towards Reducing Carbon Footprint. Indian J. Power River Val. Dev. 2020;68:145–151. [Google Scholar] [Ref list]

Bennbaia S, Wazwaz A, Abujarbou A, Abdella GM, Musharavati F. IEOM Society International towards Sustainable Society: Design of Food Waste Recycling Machine; Proceedings of the International Conference on Industrial Engineering and Operations Management; Bandung, Indonesia. 2018;6–8. [Google Scholar] [Ref list]

Beatrice Abila, Jussi Kantola, Waste management: relevance to environmental sustainability, International Journal of Environment and Waste Management (IJEWM). 2019;23(4)


Abubakar IR, Maniruzzaman KM, Dano UL, AlShihri FS, AlShammari MS, Ahmed SMS, Al-Gehlani WAG, Alrawaf TI. Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. Int J Environ Res Public Health. 2022;19(19):12717. DOI:10.3390/ijerph191912717. PMID: 36232017; PMCID: PMC9566108.

Omang DI, John GE, Inah SA, Bisong JO. Public health implication of solid waste generated by households in Bekwarra Local Government area. Afr Health Sci. 2021;21(3):1467-1473. DOI:10.4314/ahs.v21i3.58. PMID: 35222612; PMCID: PMC8843296.

Hussein I. Abdel-Shafy, Mona SM Mansour,Solid waste issue: Sources, composition, disposal, recycling, and valorization,Egyptian Journal of Petroleum, 2018;27(4):1275-1290, ISSN 1110 0621. DOI:

Siddiqua A, Hahladakis JN, Al-Attiya WAKA. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ Sci Pollut Res Int. 2022;29(39):58514-58536. DOI:10.1007/s11356-022-21578-z. Epub 2022. PMID: 35778661; PMCID: PMC9399006.

Perkumienė D, Atalay A, Safaa L, Grigienė J. Sustainable Waste Management for Clean and Safe Environments in the Recreation and Tourism Sector: A Case Study of Lithuania, Turkey and Morocco. Recycling. 2023;8(4):56. DOI:

Li P, Karunanidhi D, Subramani T, Srinivasamoorthy K. Sources and Consequences of Groundwater Contamination. Arch Environ Contam Toxicol. 2021;80(1):1-10. doi:10.1007/s00244-020-00805-z.

Epub 2021 Jan 2. PMID: 33386943; PMCID: PMC7778406.

Talabi, A. and Kayode, T. Groundwater Pollution and Remediation. Journal of Water Resources and Protection, 2019;11:1-19. DOI:10.4236/jwarp.2019.111001.

Bashir I, Lone FA, Bhat RA, Mir SA, Dar ZA, Dar SA. Concerns and Threats of Contamination on Aquatic Ecosystems. Bioremediation and Biotechnology. 2020;27:1–26. DOI:10.1007/978-3-030-35691-0_1. PMCID: PMC7121614.

FAO-Food and Agriculture Organization, The state of food and agriculture 2019. Moving forward on food loss and waste reduction. Rome, (2019) (License: CC BY-NC-SA 3.0 IGO);Google Scholar.

UNEP-United Nations Environment Program .Food waste index report 2021. Nairobi. (2021).Google Scholar.

Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials (Basel). 2020;6;13(21):4994. DOI:10.3390/ma13214994. PMID: 33171895; PMCID: PMC7664184.

De Kock L, Sadan Z, Arp R, Upadhyaya P. A circular economy response to plastic pollution: Current policy landscape and consumer perception. S. Afr. J.Sci. 2020;116:1–2.

DOI:10.17159/sajs.2020/8097. [CrossRef] [Google Scholar] [Ref list].

Koczoń P, Bartyzel B, Iuliano A, Klensporf-Pawlik D, Kowalska D, Majewska E, Tarnowska K, Zieniuk B, Gruczyńska-Sękowska, E. Chemical Structures, Properties, and Applications of Selected Crude Oil-Based and Bio-Based Polymers. Polymers 2022;14:5551.


Kumar R, Verma A, Shome A, Sinha R, Sinha S, Jha PK, Kumar R, Kumar P, Shubham, Das S, et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021; 13:9963. DOI:

Homin Kye, Jiyoon Kim, Seonghyeon Ju, Junho Lee, Chaehwi Lim, Yeojoon Yoon,Microplastics in water systems: A review of their impacts on the environment and their potential hazards,Heliyon. 2023;9(3):e14359, ISSN 2405-8440. DOI:

Yue Li, Le Tao, Qiong Wang, Fengbang Wang, Gang Li and Maoyong Song Environment & Health 2023;1(4):249-257. DOI:10.1021/envhealth.3c00052

Ziani K, Ioniță-Mîndrican CB, Mititelu M, Neacșu SM, Negrei C, Moroșan E, Drăgănescu D, Preda OT. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients. 2023;25;15(3):617. DOI:10.3390/nu15030617. PMID: 36771324; PMCID: PMC9920460.

Saeedi, M. How microplastics interact with food chain: a short overview of fate and impacts. J Food Sci Technol 2024;61:403–413.


Peivasteh-Roudsari L, Barzegar- Bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar- Oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon. 2023; 11;9(7):e18140. DOI:10.1016/j.heliyon.2023.e18140. PMID: 37539203; PMCID: PMC10395372.

Jones P, Comfort D. The forest, paper and packaging industry and sustainability. Int J Sales Retail Mark. 2017;6(1):3–21. [Google Scholar] [Ref list]

Cook B, Costa Leite J, Rayner M, Stoffel S, van Rijn E, Wollgast J. Consumer Interaction with Sustainability Labeling on Food Products: A Narrative Literature Review. Nutrients. 2023;15(17):3837.


PMID: 37686869; PMCID: PMC10489983.

Deshwal GK, Panjagari NR, Alam T. An overview of paper and paper based food packaging materials: health safety and environmental concerns. J Food Sci Technol. 2019;56(10):4391-4403.

DOI:10.1007/s13197-019-03950-z. Epub 2019 Jul 23. PMID: 31686671; PMCID: PMC6801293.

Simonetti G, Riccardi C, Pomata D, Acquaviva L, Fricano A, Buiarelli F, Senofonte M, Di Filippo P. Studies of Potential Migration of Hazardous Chemicals from Sustainable Food Contact Materials. Foods 2024;13:645. DOI:

Muncke J, Andersson, AM, Backhaus T, et al. Impacts of food contact chemicals on human health: a consensus statement. Environ Health 2020;19:25. DOI:

Bhatia L, Jha H, Sarkar T, Sarangi PK. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. Int J Environ Res Public Health. 2023;20(3):2318. DOI:10.3390/ijerph20032318. PMID: 36767685; PMCID: PMC9916134.

Thapa P, Hasnine MT, Zoungrana A, Thakur S, Yuan Q. Food Waste Treatments and the Impact of Composting on Carbon Footprint in Canada. Fermentation 2022, 8, 566. DOI:

Asad Iqbal, Feixiang Zan, Xiaoming Liu, Guanghao Chen,Net zero greenhouse emissions and energy recovery from food waste: manifestation from modeling a city-wide food waste management plan,Water Research,Volume 2023;244:120481,ISSN 0043-1354. DOI:

Ivanovich CC, Sun, T, Gordon, DR. et al. Future warming from global food consumption. Nat. Air conditioning. Chang. 2023;13:297–302. DOI:

Papargyropoulou E, Lozano R, Steinberger JK, Wright N, bin Ujang Z. The Food Waste Hierarchy as a Framework for the Management of Food Surplus and Food Waste. J.Clean. Prod. 2014;76:106–115. [Google Scholar] [CrossRef]

Wichai- utcha N, Chavalparit O. 3Rs Policy and Plastic Waste Management in Thailand. J. Mater. Cycles Waste Management. 2019;21:10–22. [Google Scholar] [CrossRef]

Schrank J, Hanchai A, Thongsalab S, Sawaddee N, Chanrattanagorn K, Ketkaew C. Factors of Food Waste Reduction Underlying the Extended Theory of Planned Behavior: A Study of Consumer Behavior towards the Intention to Reduce Food Waste. Resources 2023;12:93. DOI:

Krapivin VF, Varotsos CA, Soldatov VY. Simulation Results from a Coupled Model of Carbon Dioxide and Methane Global Cycles. School. Model. 2017;359:69–79. [Google Scholar] [CrossRef]

Gundupalli SP, Hait S, Thakur A. A review on automated sorting of source-separated municipal solid waste for recycling. Waste Management. 2017;60:56-74.

DOI:10.1016/j.wasman.2016.09.015. Epub 2016 Sep 20. PMID: 27663707.

Nattapon Leeabai, Chinnathan Areeprasert, Chanoknunt Khaobang, Niti Viriyapanitchakij, Bundit Bussa, Dilixiati Dilinazi, Fumitake Takahashi. The effects of color preference and noticeability of trash bins on waste collection performance and waste-sorting behaviors,Waste Management. 2021;121:153-163,ISSN 0956-053X. DOI:

Duffy S, Verges M. It Matters a Hole Lot: Perceptual Affordances of Waste Containers Influence Recycling Compliance. Environment and Behavior, 2009;41(5),741-749. DOI:

Yu Jiang, Daniela Carrijo, Shan Huang, Ji Chen, Nimlesh Balaine, Weijian Zhang, Kees Jan van Groenigen, Bruce Linquist,Water management to mitigate the global warming potential of rice systems: A global meta- analysis,Field Crops Research. 2019;234:47-54, ISSN 0378-4290. DOI:

Arbeláez-Estrada JC, Vallejo P, Aguilar J, Tabares-Betancur MS, Ríos-Zapata D, Ruiz-Arenas S, Rendón-Vélez E. A Systematic Literature Review of Waste Identification in Automatic Separation Systems. Recycling. 2023;8(6):86. DOI:

Winawer, J. Witthoft, N. Effects of Color Terms on Color Perception and Cognition. In: Shamey, R. (eds) Encyclopedia of Color Science and Technology. Springer, Berlin, Heidelberg. 2020.


Nattapon Leeabai, Chinnathan Areeprasert, Chanoknunt Khaobang, Niti Viriyapanitchakij, Bundit Bussa, Dilixiati Dilinazi, Fumitake Takahashi. The effects of color preference and noticeability of trash bins on waste collection performance and waste-sorting behaviors, Waste Management. 2021;121:153-163. ISSN 0956-053X. DOI:

Lin ZY, Wang X, Li CJ, Gordon MPR, Harder MK. Visual Prompts or Volunteer Models: An Experiment in Recycling. Sustainability. 2016;8(5):458. DOI:

Trent Robinson,The effects of bin location and abundance on disposal behavior at beaches,Marine Pollution Bulletin. 2023;197:115697. ISSN 0025-326X. DOI:

Fang B., Yu J, Chen Z. et al. Artificial intelligence for waste management in smart cities: a review. Environ Chem Lett. 2023;21:1959–1989. DOI:

Ferronato N, Torretta V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int J Environ Res Public Health. 2019;16(6):1060. DOI:10.3390/ijerph16061060.

PMID: 30909625; PMCID: PMC6466021.

Iftikhar Hussain, Adel Elomri, Laoucine Kerbache, Abdelfatteh El Omri. Smart city solutions: Comparative analysis of waste management models in IoT-enabled environments using multiagent simulation,Sustainable Cities and Society, 2024;103:105247. ISSN 2210-670. DOI:

Michael Niaounakis,4 - Disposal,Editor (s): Michael Niaounakis,In Plastics Design Library,Biopolymers Reuse, Recycling, and Disposal,William Andrew Publishing. 2013;107-150, ISBN 9781455731459.

DOI: 10.1016/B978-1-4557-3145-9.00004-X.

Hopewell J, Dvorak R, Kosior E. Plastics recycling: Challenges and opportunities. Philos Trans R Soc Lond B Biol Sci. 2009;364(1526):2115-26.

DOI: 10.1098/rstb.2008.0311.

PMID: 19528059; PMCID: PMC2873020.

Sayara T, Basheer- Salimia R, Hawamde , F, Sánchez A. Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy. 2020;10(11):1838.

Zhu YL, Zheng GD, Gao D, Chen TB, Wu FK, Niu MJ, Zou KH. Odor composition analysis and odor indicator selection during sewage sludge composting. J Air Waste Manag Assoc. 2016;66(9):930-40. DOI:10.1080/10962247.2016.1188865. PMID: 27192607; PMCID: PMC5062037.

Vongdala N, Tran HD, Xuan TD, Teschke R, Khanh TD. Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. Int. J. Approx. Res. Public Health. 2019;16:22. DOI:10.3390/ijerph16010022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Wiedinmyer C, Yokelson RJ, Gullett BK. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste . Approximately. Sci. Technol. 2014;48:9523–9530. DOI:10.1021/es502250z. [PubMed] [CrossRef] [Google Scholar]

Gutberlet J, Baeder AM Informal recycling and occupational health in Santo André, Brazil. Int. J. Approx. Health Res. 2008;18:1–15. DOI:10.1080/09603120701844258. [PubMed] [CrossRef] [Google Scholar]

Hettiarachchi H, Meegoda JN, Ryu S. Organic Waste Buyback as a Viable Method to Enhance Sustainable Municipal Solid Waste Management in Developing Countries. Int. J. Approx. Res. Public Health. 2018;15:2483. DOI:10.3390/ijerph15112483.

[PMC free article] [PubMed] [CrossRef] [Google Scholar]

Ouda OKM, Raza SA, Nizami AS, Rehan M, Al-Waked R, Korres NE. Waste to energy potential: A case study of Saudi Arabia. Renew. Sustain. Energy Rev. 2016;61:328–340.

DOI:10.1016/j.rser.2016.04.005. [CrossRef] [Google Scholar]

Sadef Y, Nizami AS, Batool SA, Chaudary MN, Ouda OKM, Asam ZZ, Habib K, Rehan M, Demirbas A. Waste-to-energy and recycling value for developing integrated solid waste management plan in Lahore. Energy Sources Part B Econ. Plan. Policy. 2016;11:569–579.

DOI:10.1080/15567249.2015.1052595. [CrossRef] [Google Scholar]

Sawadogo M, Tchini Tanoh S, Sidibé S, Kpai N, Tankoano I. Cleaner production in Burkina Faso: Case study of fuel briquettes made from cashew industry waste. J.Clean. Prod. 2018;195:1047–1056. DOI:10.1016/j.jclepro.2018.05.261. [CrossRef] [Google Scholar]

Ghisolfi V, Chaves GDLD, Siman RR, Xavier LH System dynamics applied to closed loop supply chains of desktops and laptops in Brazil: A perspective for social inclusion of waste pickers. Waste Management. 2017;60:14–31. DOI:10.1016/j.wasman.2016.12.018. [PubMed] [CrossRef] [Google Scholar]

Sahoo, L, Mohapatra, D, Raghuvanshi, HR Kumar S, Kaur R, Anshika Sapna, Chawla R, Afreen N. Transforming Agriculture through Artificial Intelligence: Advancements in Plant Disease Detection, Applications, and Challenges. Journal of Advances in Biology & Biotechnology. 2024;27(5):381–388. DOI:

Aneesha V, Dhalin D, Subhagan SR, Rani, OPR, Khatawkar DS. Carbon Footprint of Electrostatic Sprayer in Comparison with Air Compression Sprayer and Mistblower. Current Journal of Applied Science and Technology. 2020;39(29):20–29. DOI:

Mancini MS, Galli A, Niccolucci V, Lin D, Bastianoni S, Wackernagel M, Marchettini N. Ecological footprint: refining the carbon footprint calculation. Ecological indicators. 2016;61:390-403.

H. R., Kumar, S., Kaur, R., Anshika, Sapna, Chawla, R., & Afreen, N. Transforming Agriculture through Artificial Intelligence: Advancements in Plant Disease Detection, Applications, and Challenges. Journal of Advances in Biology & Biotechnology. 2024;27(5):381–388. DOI:

Aneesha V, Dhalin, D, Subhagan SR, Rani OPR, Khatawkar DS. Carbon Footprint of Electrostatic Sprayer in Comparison with Air Compression Sprayer and Mistblower. Current Journal of Applied Science and Technology. 2020;39(29):20–29. DOI: