Asian Journal of Environment & Ecology

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Articles in Press
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Books
  • Testimonials
Advanced Search
  1. Home
  2. Archives
  3. 2021 - Volume 14 [Issue 3]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Heavy Metal Content and Physico-Chemical Analyses of Soils under the Litter of some Medicinal Taxa in the Luki Biosphere Reserve, Democratic Republic of the Congo

  • Florent Biduaya Mukeba
  • Myriam Mukadi Ngondo
  • Nazaire Kabemba Kadima
  • Prince Bofati Ilonga
  • Patrick Kayembe Bibasuya
  • Patience Mpia Ngelinkoto
  • Paulin Kapepula Mutwale
  • Koto-te-Nyiwa Ngbolua
  • Kalima Nkoma Mwange
  • Johnny Bopopi Mukoko
  • Nadège Kabamba Ngombe
  • Pius T. Mpiana
  • Théophile Mbemba Fundu

Asian Journal of Environment & Ecology, Page 19-35
DOI: 10.9734/ajee/2021/v14i330208
Published: 6 April 2021

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Aim: The aim of this study was to compare the texture, mineral element and heavy metal content of the soil under the litter of different selected species in relation to the plan of their pedogenesis.


Methods: The granulometric analysis of the various samples based on laser diffraction, measurements of Total Nitrogen and Total Organic Carbon were performed using the Elemental Analyzer, the Organic Matter content is estimated by the loss of ignition method using a Salvis furnace, In order to estimate the CaCO3 content. The same samples were heated in the oven at 1000°C for 60 minutes and reweighed. The carbonate content is estimated by the loss in mass during this second firing, multiplied by 2.274 which is the molecular weight ratio between CaCO3 and CO2. The heavy metal and mineral composition was evaluated by ICP-AES and AAS.


Results: The granulometric analyses show a sandy texture, according to the FAO classification. The organic matter content thus observed in the soils under the litter of these four species did not show any significant difference. The concentration of major mineral elements recorded in soils under the litter of Blighia welwitchii, Oncoba welwitschii, Zanthoxylum gilletii and Harungana madagascariensis did not show any significant difference. However, potassium, phosphorus, and magnesium have a high concentration compared to calcium and sodium. This study showed that the levels of cadmium, lead, arsenic and aluminum in the various samples of litter soils of all plant species including nickel for B. welwitschii are above the standards set by the Canadian Council of Ministers of the Environment for soil quality. Pollution factors for aluminum are the highest. This indicates that aluminum is the most polluting metal. The low pollution factors for lead and nickel are due to the low fixation of these metals by soils.


Conclusions: Our study took place in the Luki Biosphere reserve and showed that the different soils under litter are polluted by very toxic and persistent heavy metals such as cadmium, lead, aluminum, arsenic and nickel. This study has revealed new aspects of heavy metal pollution. This pollution represents a serious threat to the environment in general and to humans in particular through the food chain.


Keywords:
  • Litter
  • ICP-AES
  • SAA
  • luki
  • blighia welwitchii
  • zanthoxylum gilletii
  • harungana madagascariensis
  • oncoba welwitschii
  • Full Article – PDF
  • Review History

How to Cite

Mukeba, F. B., Ngondo, M. M., Kadima, N. K., Ilonga, P. B., Bibasuya, P. K., Ngelinkoto, P. M., Mutwale, P. K., Ngbolua, K.- te-N., Mwange, K. N., Mukoko, J. B., Ngombe, N. K., Mpiana, P. T., & Fundu, T. M. (2021). Heavy Metal Content and Physico-Chemical Analyses of Soils under the Litter of some Medicinal Taxa in the Luki Biosphere Reserve, Democratic Republic of the Congo. Asian Journal of Environment & Ecology, 14(3), 19-35. https://doi.org/10.9734/ajee/2021/v14i330208
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Kasongo K. Amélioration de la qualité des sols sableux de plateau de Batéké (RD Congo) par application des matériels géologiques et des déchets organiques industriels locaux. Thèse de doctorat, Université de Gant. 2010; 400.

Mathieu L. Contribution à l'établissement d'un plan directeur d'aménagement intégré du bassin de la Gambie. Gembloux: rapport de première phase du projet OMVG-AGCD-CIUF. 1988;164.

Djibu K. Evaluation de l’état de la fragmentation des forêts au Katanga. Mémoire DEA, ULB. 2007;85.

Boudene C. Dossier scientifique sur la toxicité des métaux lourds. Science et vie. 2001;24.

Bost M. Element-traces et toxicologie des métaux traces. Trace Element-Institut pour l’UNESCO. Pharmaco Toxico Analyses de Traces, Biochimie, HEH. 2010;10.

Nasr SM, Okbah MA, Kasem SM. Environmental assessment of heavy metal pollution in bottom sediments of Aden Port, Yemen. IJOO. 2006;1:99−109.

Audry S, Schäfer J, Blanc G, Jouanneau J. Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ. Pollut. 2004;132:413−426.

Shrivastava P, Saxena A, Swarup A. Heavy metal pollution in a sewage‐fed lake of Bhopal, (MP) India. Lakes Reserv. Res. Manag. 2003;8:1−4.

Miguel ED, Irribarren I, Chacón E, Ordoñez A, Charlesworth S. Évaluation fondée sur le risque de l’exposition des enfants aux oligo-éléments dans les terrains de jeux de Madrid (Espagne) Chemosphere. 2007;66:505–513.

Bliefert C, Perraud R. Chimie de l’Environnement. Air, Eau, Sols, Déchets. De Boeck Université. 2010;369-388.

Miranda M, Lopez-Alonso M, Castillo C, Hernández J, Benedito JL. Effects of moderate pollution on toxic and trace metal levels in calves from a polluted area of northern Spain. Environ. Int. 2005;31:543-548.

Matías MSA. Contamination en métaux lourds des eaux de surface et des sédiments du Val de Milluni (Andes Boliviennes) par des déchets miniers. Approches géochimique, minéralogique et hydrochimique. Thèse de l’Université Toulouse III -Paul Sabatier. 2008;489.

Jakubovski M. Zinc and cadmium. In: Patty’s toxicol, 5e éd. (2) New York. 2001;253-325.

Barceloux DG, Selenium J. Toxicol clin toxicol. 1999;37:145–172.

Barceloux DG. Chromium. Clin. Toxicol. 1999;37(2):173-194.

Plumlee GS, Ziegler TL. Treatise on geochem. Elservier-Pergamon, Oxford. 2003;264-310.

Fergusson JE. The heavy metal elements: Chemistry, environmental impact and health effects. Pergamon Press, Oxford. 1990;614.

Bisson M, Diderich R, Houeix N, Hulot C, Lacroix G, Lefèvre JP, et al. Cadmium et ses dérivés, INERIS. 2014;60

DRC-11-117259-10308B.doc INERIS.

Mpundu MMM, Mununga KF, Kaumbu KJM, Mwilambwe KX, Maloba KJP, Banza IM, et al. Influence des sols contaminés en cuivre sur le développement de deux variétés (locale et améliorée) de légumes dans la région de Lubumbashi (RD. Congo). Journal of Applied Biosciences. 2017;115:11410-11422.

Available:https://dx.doi.org/10.4314/jab/v115i1.1

Manda BK. Évaluation de la contamination de la chaine trophique par les métaux lourds dans le bassin de Lalufira supérieures (Katanga/RD Congo). Mémoire de DEA inédit. Faculté des Sciences Agronomiques/Université de Lubumbashi. 2009;50.

Kabala C, Singh BR. Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. J. Environ. Qual. 2001;30:485–492.

Ngoy SM. Phytostabilisation des sols contaminés en métaux lourds par l’activité minière au Katanga « Cas du quartier Gécamines/Penga Penga contaminés en métaux par les émissions de la fonderie de cuivre de l’Usine Gécamines/Lubumbashi ». Thèse de doctorat. Université de Lubumbashi. 2010;10.

Farago ME, Clark AJ, Pitt MJ. The chemistry of plants, which accumulate metals. Coordination Chemistry Reviews. 1975;16:1-8.

Kelly PC, Brooks RR, Dilli S, Jaffre T. Preliminary observations on the ecology and plant chemistry of some nickel-accumulating plants from New Caledonia. Proceedings of the Royal Society of London Section B. 1975;189:69-80.

Lee J, Reeves RD, Brooks RR, Jaffre T. Isolation and identification of a citrato complex of nickel from nickel-accumulating plants. Phytochemistry. 1977b;16:1503-1505.

Lee J, Reeves RD, Brooks RR, Jaffre T. The relationship between nickel and citric acid in some nickel-accumulating plants. Phytochemistry. 1978;17:1033-1035.

Kersten WJ, Brooks RR, Reeves RD, Jaffre T. Nature of nickel complexes in psychotria douarrei and other nickel-accumulating plants. Phytochemistry. 1980;19:1963-1965.

Morrison RS, Brooks RR, Reeves RD, Malaisse F, Horowitz P, Aronson M, et al. The diverse chemical forms of heavy metals in tissue extracts of some metallophytes from Shaba Province, Zaire. Phytochemistry. 1981;20:455-458.

Ewais EA. Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biol. Plant. 1997;39:403-410.

Xiong ZT. Bioaccumulation and physiological effects of excess lead in a roadside pioneer species Sonchus oleraceus L. Environ. Pollut. 1997;97:275-279.

Kastori R, Plesnicar M, Sakac Z, Pancovic D, Arsenijevic Maksimovic I. Effect of excess lead on sunflower growth and photosynthesis. J. Plant Nutr. 1998;21:75-85.

Fargasová A. Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots. Biol. Plant. 2001;44:471-473.

Kevresan S, Petrovic N, Popovic M, Kandrac J. Nitro- gen and protein metabolism in young pea plants as af- fected by different concentrations of nickel, cadmium, lead, and molybdenum. J. Plant Nutr. 2001;24:1633-1644.

Singh RP, Tripathi RD, Sinha SK, Maheshwari R, Srivastava HS. Response of higher plants to lead contaminated environment. Chemosphere. 1997;34:2467-2493.

Kovacevic G, Kastori R, Merkulov LJ. Dry matter and leaf structure in young wheat plants as affected by cad- mium, lead, and nickel. Biol. Plant. 1999;42:119-123.

Lummerzheim M, Sandroni M, Castresana C, De Oliveira D, van Montagu M, Roby D, et al. B. Com- parative microscopic and enzymatic characterization of the leaf necrosis induced in Arabidopsis thaliana by lead nitrate and by Xanthomonas campestris pv. campestris after foliar spray. Plant Cell Environ. 1995;18:499-509.

Lavid N, Schwartz A, Lewinsohn E, Tel-Or E. Phenols and phenol oxidases are involved in cadmium accumula- tion in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae). Planta. 2001a;214:189-195.

Lavid N, Schwartz A, Yarden O, Tel-Or E. The in- volvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta. 2001b;212:323-331.

Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxi- dase activities in root tips of soybean (Glycine max). Physiol. Plant. 1991;83:463-468.

Gallego SM, Benavides MP, Tomaro ML. Effect of cadmium ions on antioxidant defense system in sunflower cotyledons. Biol. Plant. 1999;42:49-55.

Pereira PH, Cambraia J, Sant’Anna R, Mosquim PR, Moreira MA. Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Rev. Bras. Fisiol. Veg. 1999;11:137-143.

Baryla A, Laborde C, Montillet JL, Triantaphylidès C, Chagvardieff P. Evaluation of lipid peroxidation as a toxicity bioassay for plants exposed to copper. Environ. Pollut. 2000;109:131-135.

Hartley-Whitaker J, Ainsworth G, Meharg AA. Cop- per- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ. 2001;24:713-722.

Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 2001;52:2115-2126.

Shah K, Kumar RG, Verma S, Dubey RS. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 2001;161:1135-1144.

Golia EE, Dimirkou A, Mitsios IK. Influence de certains paramètres du sol sur l’accumulation de métaux lourds par les légumes cultivés dans les sols agricoles de différents ordres de sol. Environ. Contam. Tox. 2008;81:80–84.

Nezhad MTK, Tali MG, Mahmoudi MH, Pazira E. Assessment of as and Cd contamination in topsoils of Northern Ghorveh (Western Iran): Role of parent material, land use and soil properties. Environ. Earth Sci. 2011;64:1203–1213.

Loizeau JL, Arbouille D, Santiago S, Vernet JP. Evaluation of a wide-range laser diffraction grain-size analyzer for use with sediments. Sedimentology. 1994;41.

AOAC (Association of Official Analytical Chemists), official methods of analysis, Association Of Official Analytical Chemists, Washington, DC, USA; 2000.

AOAC (Association of Official Analytical Chemists), official methods of analysis, Association Of Official Analytical Chemists, Washington, DC, USA; 2019.

Alongo L. Etude microclimatique et pédologique de l’effet de lisière en cuvette centrale congolaise : Impact écologique de la fragmentation des écosystèmes. Cas des séries Yangambi et Yakonde à la région de Yangambi (RD Congo). Thèse de doctorat Université Libre des Bruxelles. 2013;316.

Baize D. Guide des analyses en pédologie. techniques et pratiques. INRA, Paris. 2000;254.

Ngongo ML, Van Ranst E, Baert G, Kasongo EL, Verdoodt A, Mujinya BB, et al. Congo. Tome I : Etude et Gestion. UGent – HoGent – UNILU. 2009;262.

Picard N. Comment interpréter les résultats d’une analyse en composantes principales ITCF, Montpéllier. 2010;68.

Baize D. Guide des analyses en pédologie. Techniques et pratiques. INRA, Paris. 2000;254.

Kauffman S, Sombroek W, Mantel S. Soils of rainforests: Characterization and major constraints of dominant forest soils in the humid tropics. In: Schulte A. et Ruhiyat D. (Ed), Soils of tropical ecosystems: Characteristics, Ecol Manag. Springer, Berlin; 1998.

Yemefack M, Nounamo L, Njomgang R, Bilong P. Influence des pratiques agricoles sur la teneur en argile et autres propriétés agronomiques d’un sol Ferrallitique au sud Cameroun. TROPICULTURA. 2004;22:3-10.

Perrono P, Mém DUESS, DEP. Univ. Picardie, Amiens (1999). Chambre Syndicale Nationale des Fabricants de Chaux Grasses et Magnésiennes, Capital Sol. 2003;12:2.

Segalen P. Le remaniement des sols et la mise en place de la stone-line en Afrique. Cah. ORSTOM, Sér. Pédol. 1967;5(2):137-187.

Van Wambeke. Les sols des tropiques : Propriétés et appréciation. CTA & Huy Trop asbl. 1995;335.

Ben HH, Aloui T, Gallali T, Bouzid T, El Amri S, Ben HR, Agro Solutions. 2008;19(2):14.

Leprun JC. Cah. ORSTOM, sér. Pédol. 1988;24(4):333-334.

CCME (Conseil Canadien des Ministres de l’Environnement). Recommandations canadiennes pour la qualité des sols, Environnement et santé humaine. Tableaux sommaires, mis à jour en Recommandations canadiennes pour la qualité de l’environnement, 1999, Winnipeg, le Conseil; 2007.

Sombo BM, Lumbuenamo RS, Lejoly J, Aloni JK, Mafuka PM. Caractéristique des sols sous savane et sous forêt naturelle sur le plateau de Batéké en république Démocratique du Congo. Tropicultura. 2016;34(1):87-97.
  • Abstract View: 194 times
    PDF Download: 29 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Asian Journal of Environment & Ecology. All rights reserved.