Dynamics of Sediment Organic Matter along Bandama River in the Department of Sinématiali, Northern Côte d’Ivoire

Main Article Content

N’doufou Gnosseith Huberson Claver
Kouadio Koffi Hypolithe
Nangah Krogba Yves
Tra Bi Djè Frederic

Abstract

This study examines the distribution of organic matter in areas affected by frequent floods along the east bank of the Bandama River in the department of Sinématiali. The sites sampled are defined by two zones, one near the stream and one far from the stream. Samples collected were analyzed, including for texture with aggregation analysis by the Robinson pipette, and standard sediment analysis methods for measuring organic carbon (CO), nitrogen (N), and organic matter (MO). Statistical analyzes were carried out to assess the differences between the physico-chemical parameters of the different sampling areas. Results show that sediment from the various study sites has a sando-limonous to limono-clay texture. Total organic matter levels are higher in surface sediments that contain the lowest proportions of clay. Rates range from 31.98 gkg-1 to 38.98 gkg-1. In depth, the rates obtained are very low and range from 6.3 gkg-1 to 8.193 gkg-1. The low rates recorded in depth are reported to be related to leaching caused by periodic flooding. These results show that successive floods have a direct effect on the dynamics of the physico-chemical properties of the sediments along the shore.

Keywords:
Sediment, shore, organic matter, particle size, flooding

Article Details

How to Cite
Huberson Claver, N. G., Koffi Hypolithe, K., Krogba Yves, N., & Djè Frederic, T. B. (2019). Dynamics of Sediment Organic Matter along Bandama River in the Department of Sinématiali, Northern Côte d’Ivoire. Asian Journal of Environment & Ecology, 11(1), 1-14. https://doi.org/10.9734/ajee/2019/v11i130129
Section
Original Research Article

References

Saint-Laurent D, ST-Laurent J, Lavoie L, Ghaleb B. Use geopedological methods for the evaluation of sedimentation rates on river floodplains. CA TENA. 2008a;73: 321-337.

Saint-Laurent D, Lavoie L, ST-Laurent J. Récurrence des inondations et édification des plaines alluviales des bassins du Centre-Sud du Québec (Canada). Revue des Sciences de l'Eau. 2009b;22(1):51-68.

Pfister L, Kwaduijk J, Musy A, Bronstert A, Hoffmann L. Climate change, land use change and runoff prediction in the Rhine-Meuse basins, River. Res. Applic. 2004;20: 229-241.

Boyer C, Chaumont D, Chartier, Roy AG. Impact of climate change on the hydrology of St. Lawrence tributaries. Journal of Hydrology. 2010;384(1-2):65-83.

Clinton SM, Power M, Swenson R. Impacts of inundation regime, floodplain vegetation, and burrowing animaIs on the incorporation of carbon into floodplain soils, CALFED Science Fellows Program, Project Number: R/SF-1. 2006;2003:1-9.

Watkins SC, Quinn GP, Gawne B. Changes in inorganic-matter dynamics and physic chemistry, associated with riparian vegetation loss and river regulation in floodplain wetlands of the Murray River, Australia, Marine and Fresh water Research. 2010;61:1207-1217.

Power EA, Chapman PM. Assessing sediment quality, In Burton, GAJ (Eds). Sediment Toxicity Assessment, Lewis, MI, USA. 1992;1-18.

Cyril M. Origine et devenir de la matière organique des sédiments de mangroves de Guyane française. - Précurseurs, Environnements de dépôt, Processus de décomposition et Relation avec les métaux lourds –. Géologie appliquée. Université d’Orléans. 2003;272.

Siegenthaler U, Sarmiento JL. Atmospheric carbon dioxide and the ocean. Nature. 1993;365:119-125.

Filella M. Freshwaters: Which NOM matters? Environmental Chemistry Letters. 2009;7(1):21-35.

Labanowski J. Matière organique naturelle et anthropique: Vers une meilleure compréhension de sa réactivité et de sa caractérisation. Thèse, Université de Limoges. 2004;199.

Kalbitz K, Geyer S. Different effects of peat degradation on dissolved organic carbon and nitrogen. Org. Geochem. 2002;33(3): 319-326.

Zhu WX, Carreiro MM. Variations of soluble organic nitrogen and microbial nitrogen in deciduous forest soils along an urban–rural gradient. Soil Biol. Biochem. 2004;36:279-288.

Croué JP, Benedetti MF, Violleau D, Leenheer JA. Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte river: Evidence for the presence of nitrogenous binding site. Environ. Sci. Technol. 2003; 37(2):328-336.

Meyers PA, Lallier-Vergès E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J. Paleolimnol. 1999;21:345-372.

AFNOR. Qualité des sols: Méthodes d’analyse, Recueil de normes françaises. Afnor, 1ère édition. 1987;136.

Shepard F. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology. 1954;24:151-158.

Bonnet C. Développement de bio-essais sur sédiments et applications de l’étude, en laboratoire, de la toxicité de sédiments dulçaquicoles contaminés. Thèse de l’Université de Metz. 2000;326.

Mamadou AS. Hydrologie et géochimie des transports fluviaux dissous et particulaires dans le bassin versant du Milo (République de Guinée), Thèse de doctorat, Université de Toulouse (INPT). 2018;183.

Rofes G. Etude des sédiments. méthodes de prélèvemnt et d’analyses pratiquées au laboratoire de sédimentologie. Etude N° 47, Ministère de l’Agriculture, GTGREF. 1980;50.

Aubert G. Méthodes d’analyses des sols. Centre National de Documentation Pédagogique, Marseille. 1978;189.

Thurman EM, Malcolm RL. Preparative isolation of aquatic humic substances. Environ. Sci. Technol. 1981;15(4):463-466.

Baize D. Guide des analyses en pédologie. Ed. INRA, Paris. 2000;257.

Delmas D. Minéralisation de la matière organique et échanges ioniques à l'interface eau-sédiment de l'étang de Berre, Méditerranée. Oceanol Acta. 1980; 3(3):347-356.

Lele N. Potentiel d’amélioration de la fertilité des sols sableux et acides de Kinshasa (RDC) par l’usage du charbon des bois (biochar), de la biomasse végétale et des engrais minéraux Thèse Université de Liège. 2016;196.

Drouin A, Saint-Laurent D, Lavoie L, Ouellet C. High-precision digital elevation model to evaluate the spatial distribution of Soil organic carbon inactive floodplains. Wetlands. 2011;31:1151-1164.

Saint-Laurent D. Reconstruction of flood events and links with climatic factors: A case study of the Saint-François Basin. JETS. 2007;31:5-24.

Daniel J, Dupont J, Christian Jouannic C. Etude de la relation entre le carbone organique et l’azote dans les sédiments de la Baie d’ Ambaro. ORSTOM Nosy-Bé, Doc. Multigr. 1970;16:11.

Bridgham D, Megonigal JP, Kedler JK, Bliss NB, Trettin C. The carbon balance of North American wetlands, Wetlands. 2006; 26(4):889-916.

Hartman M, Muller PJ., Suess E, Van der Weidjen CH. Chemistry of tate quaternary sediments and their interstitial waters from the N-W African continental margin, "Meteor" Forschungsergeh., Reihe C. 1976;24:1-67.

Bordovskiy OK. Accumulation and transformation of organic substances in marine sediments. 2. Source of organic matter in marine basins, Mar. Geol. 1965a; 3:5-31.

Cierjacks A, Kleinschmit B, Kowarik L, Graf M, Lang F. Organic matter distribution in floodplains can be predicted using spatial and vegetation structure data, River. Res. Applic. 2010;1-10.

Bordovskiy OK. Accumulation and transformation of organic subtances in marine sediments. 4. Transformation of organic matter in bottom sediments and its early diagenesis, Mar. Geol. 1965b;383-114.

Ouertani N, Hamouda R, Belayouni H. Etude de la matière organique dans les sédiments superficiels d'un système aquatique confiné anoxique évoluant en milieu urbain : cas du Lac sud de Tunis. Géo-Eco-Trop. 2006;30(2):21-34.

BELIN S. Distribution microscopique de la matière organique disséminée dans les roches mères: Technique d'étude, interprétation des conditions de dépôt et de diagenèse. Thèse de doctorat de l'Université d'Orsay. 1992;371.

Kaplan 1R, Rittenberg SC. Basin, sedimentation and diagenesis, in: The Sea 3, edited by M. N. Hill, Interscience Publish, New York, London. 1963;583-619.

Nestler JM, Long KS. Development of hydrological indices to aid cumulative impact analysis of riverine wetlands, Regulated Rivers: Research & Management. 1997;13:317-334.

Monirul M, Mirza Q, Warrick RA, Ericksen NJ. The implications of climate change on floods on the Ganges, Brahmaputra and Meghna Rivers fi Bangladesh, Climatic Chang. 2003;57:287-318.

Shields FD, Knight SS, Cooper CM. Cyclic perturbation of lowland river channels and ecological response, Regul. Rivers: Res. Mgmt. 2000;16:307-325.
Lavoie L, Saint-Laurent D, St-Laurent J. Analyse pédologique et

sédimentologique des sols alluviaux et paléosols des terrasses d'inondation. Canadian Journal of Soil Science. 2006; 86:1-14.

Frazier P, Page K. A reach-scale remote sensing technique to relate wetland inundation to river flow, River. Res. Applic. 2008;(25):836-849.

Debyser J. Contribution à l'étude géochimique des vases marines. Inst. Fr. du Pétrole - Division Sédimentologie - Réf. 6005 Edit. Technip PARIS. 1961:249.

Waksman SA. On the distribution of organic matter in the sea bottom and the chemical nature and origin of marine humus, Soi/Sei. 1933;36:125-147.

Cifuentes LA, Sharp JH, Fogel ML. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnology and Oceanography. 1988;33: 1102-1115.

Su ZY, Xiong YM, Zhu JY, Ye YC, Ye M. Soil organic carbon content and distribution in a small landscape of Dongguan, South China, Pedosphere. 2006;16(1):10-17.

Bordovskiy OK. Accumulation and transformation of organic substances in marine sediments. 2. Source of organic matter in marine basins, Mar. Geol. 1965a; (3):5-31.

Chaignon V. Biodisponibilité du cuivre dans la rhizosphère de différentes plantes cultivées. Cas de sols viticoles contaminés par des fongicides. Ecole doctorale, Sciences de l’Environnement: Système Terre, Aix-Marseille III. 2001;183.

Schilling KE, Palmer JA, Bettis Iii EA, Jacobson P, Schultz RC, Isenhart TM. Vertical distribution of total carbon, nitrogen and phosphorus in riparian soils of Walnut Creek, southern Iowa, Catena. 2009;77:266-273.

Nadeu E, De Vente J, Martinez-Mena M, Boix-Fayos C. Exploring
partic1e size distribution and organic carbon pools mobilized by different erosion

processes at the catchment scale, J Soil Sediment. 2010;2:667-678.

Krull ES, Baldock lA, Skjemstad JO. Importance of mechanisms and

processes of the stabilization of soil organic matter for modelling carbon turnover. Functional Plant Biology. 2003; 30:207-222.

Jindaluang W, Kheoruenromne L, Suddhiprakarn Bhupinder PS, Balwant S. Influence of soil texture and mineralogy on organic matter content and composition in physically separated fractions soils of Thailand. Geoderma. 2013;195/196:207-219.

Keil RG, Montlucon DB, Prahl FR, Hedges JI. Sorptive preservation of labile organic matter in marine sediments. Nature. 1994; 370:549-552.

Gretener B, Stromquist L. Overbank sedimentation rates of fine grained sediments. A study of the recent deposition in the lower river Fyrisan. Geografiska Annaler. 1987;69A:139- 146.