Neural Oxidant-stress by Azadirachtin Induces Anti-oxidative Enzymes Evincing Biomarker Potential in Paddy Pest, Spathosternum prasiniferum prasiniferum (Orthoptera:Acridoidea)

Main Article Content

Balaram Manna
Smarajit Maiti
Amlan Das

Abstract

Azadirachtin (C35H44O16/AZT) develops antifeedancy/growth-regulation/fecundity-suppression/ sterilization/oviposition/repellence and deformity in insect via biochemical/cellular changes and causes their death. Agricultural productivity/quality/eco-sustainability is concerned to this issue. ROS are cytotoxic-factors generated in invertebrates in stress-conditions. The present in-vivo/in-vitro study aimed to investigate the impact of dose dependant AZT toxicity on oxidative-stress-marker (alkaline-phosphatise/ALP; thiobarbituric-acid-reactive-substances/TBARS; non-protein-soluble-thiols/NPSH; acetyl-cholinesterase/AChE) and antioxidant-enzyme activity (superoxide-dismutase/SOD; catalase/CAT; glutathione-peroxidise/GPx; amylase) in brain/hemolymph of Spathosternum prasiniferum prasiniferum (Walker,1871) (Orthoptera:Acridoidea). Acridids are highly abundant and bio-indicator of grassland-ecosystem. During cultivation, insects are exposed (dose/time dependant) to AZT. AZT developed restlessness, jerky-movements and swarming-movements in the insects. It promoted oxidative-stress-marker in brain/hemolymphin both sexes but female had significantly stimulated antioxidant-enzymes to overcome cellular-stress. Increase of brain TBARS, antioxidant-enzymes and decrease in NPSH by AZT indicates oxidative-stress induction in this species. In several instances damage to the brain DNA was noticed. In general female insect responded more intensely with some prominent adaptive strategies.

Keywords:
Azadirachtin, Orthoptera, Acridoidea, brain, hemolymph, reactive oxygen species, antioxidant defence.

Article Details

How to Cite
Manna, B., Maiti, S., & Das, A. (2019). Neural Oxidant-stress by Azadirachtin Induces Anti-oxidative Enzymes Evincing Biomarker Potential in Paddy Pest, Spathosternum prasiniferum prasiniferum (Orthoptera:Acridoidea). Asian Journal of Environment & Ecology, 10(2), 1-10. https://doi.org/10.9734/ajee/2019/v10i230111
Section
Original Research Article

References

Wink M. Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 1988;75(2):225-233.

Mordue AJL, Morgan ED, Nisbet AJ. Azadirachtin, a natural product in insect control. In: Gilbert LI, Iatrou K, Gill SS. (ed.), Comprehensive molecular insect science., Elsevier, Amsterdam. 2010;117-134.

Sami AJ, Shakoori AR. Potential of azadirachtin and neem (Azadirachta indica) based saponins as biopesticides for in vitro insect pest’s cellulase (Beta-1,4- endoglucanase) enzyme inhibition and in vivo repellency on Tribolium castaneum. Br. Biotechnol. J. 2014;4:904-917.

Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016;1863(12):2977-2992.

Halliwell B. Reactive oxygen species and the central nervous system. J. Neurochem. 1992;59(5):1609-1623.

Sharma HC, Norris DM. Comparative feeding preference and food intake and utilization by the cabbage looper (Lepidoptera: Noctuidae) on three legume species. Environ. Entomol. 1991;20(6): 1589-1594.

Lowry OH, Rosebrough MJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193(1):265-275.

Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol.1978;52:302-310.

Forman HJ. Critical methods in free radical biology & medicine. Free Radic. Biol. Med. 2009;47(2):207.

Lima-Oliveira AP, Alevi KC, Anhê AC, Azeredo-Oliveira MT. Alkalinephosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae). Genet. Mol. Res. 2016;15(3).

DOI: 10.4238/gmr.15038339

[PubMed PMID: 27525888]

Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcho-linesterase activity. Biochem. Pharmacol. 1961;7(2):88-90.

Christine JW, Joseph JC. Measurement of superoxide dismutase, catalase, and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 2010;5(1):51-66.

Moreno OAV, Vazquez-Duhalt R, Nolasco H. Extracellular accumulation of high specific-activity peroxidase by cell suspension cultures of cowpea. Plant Cell Rep. 1990;9(3):147-150.

Andrades A, Contreras LM. Amylase zymography. Methods Mol. Biol. 2017;1626:301-308.

Garcia MV, Macias D, Fau GY, Ganan Y, Fau-Garcia-Lobo JM, Garcia-Lobo JmFau - Francia MV, Francia MvFau-Fernandez-Teran MA, Fernandez-Teran Ma Fau-Hurle JM, Hurle JM. Internucleosomal DNA fragmentation and programmed cell death (apoptosis) in the interdigital tissue of the embryonic chick leg bud. J. Cell Sci. 1993;106:201-208.

Stevenson DE, Kehrer JP, Kolaja KL, Walborg EF, Klaunig JE. Effect of dietary antioxidants on dieldrin-induced hepatotoxicity in mice. Toxicol. Lett. 1995;75(1-3):177-183.

Huc L, Tekpli X, Holme JA. c-Jun NH2-terminal kinase-related Na+/H+ exchanger isoform 1 activation controls hexokinase II expression in benzo(a) pyrene-induced apoptosis. Cancer Res. 2007;67:1696-1705.

Senthil-Nathan S, Chung PG, Murugan K. Effect of botanical insecticides and bacterial toxins on the gut enzyme of the rice leaf folder Cnaphalocrocis medinalis. Phytoparasitica. 2004;32:433-443.

Hoek JB, Pastorino JG. Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol. 2002;27(1):63-68.

Catalgol BK, Ozden S, Alpertunga B. Effects of trichlorfon on malondialdehyde and antioxidant system in human erythrocytes. Toxicol. In vitro. 2007;21(8):1538-1544.

Ward RJ, Kuhn LC, Kaldy P, Florence A, Peters TJ, Crichton RR. Control of cellular iron homeostasis by iron responsive elements in vivo. Eur. J. Biochem. 1994;220:927-931.

Otto DM, Moon TW. 3,3′,4,4′-tetrachlorobiphenyl effects on antioxidant enzymes and glutathione status in different tissues of rainbow trout. Pharmacol. Toxicol. 1995;77(4):281-287.

Meister A, Tate SS. Glutathione and related gamma-glutamyl compounds: Biosynthesis and utilization. Annu. Rev. Biochem. 1976;45:599-604.

Kim JI, Jung CS, Koh YH, Lee SH. Molecular, biochemical and histochemical characterization of two acetyl cholinesterase cDNAs from the German cockroach Blattella germanica. Insect Mol. Biol. 2006;15(4):513-522.

Tang ZH. Research status and perspectives of insect resistance to insecticides in China. Entomol. Knowledge. 2000;37:97-103.

Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S. Biomarkers of oxidative stress: A comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci. Total Environ. 2003;309(1-3): 105-115.

Mekail A, Sharafaddin ZA. A study of the activity of catalase and glutathione S- transferase in wearling and adult rats intoxicated with diazinon, carbaryl and lambda-cyhalothrin. J. Duhok. Uni. 2009;12:138-145.

Monteiro DA, Almeida JA, Rantin FT, Kalinin AL. Oxidative stress biomarkers in the freshwater characid fish Brycon cephalus, exposed to organophosphate insecticide folisuper 600 (Methyl parathion). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006;143(2):141-149.

Sami AJ, Shakoori AR. Cellulase activity inhibition and growth retardation of associated bacterial strains of Aulacophora foveicollis by two glycosylated flavonoids isolated from Mangifera indica leaves. J. Med. Plant Res. 2010;5:184-190.

Sivakumar S, Mohan M, Franco OL, Thayumanavan B. Inhibition of insect pest α-amylases by little and finger millet inhibitors. Pest. Biochem. Physiol. 2006;85(3):155-160.

Sharma D, Saxena P, Singh V, Sharma R. Assessment of DNA degradation in lymphocytes of albino rat (Rattus norvegicus) under lambda cyhalothrin stress. World Appl. Sci. J. 2010;11(1):24-28.

Hussien HM, Abdou HM, Yousef MI. Cypermethrin induced damage in genomic DNA and histopathological changes in brain and haematotoxicity in rats: The protective effect of sesame oil. Brain Res. Bull. 2013;92:76-83.